

Naming Ionic Compounds

- Write the name of the cation (positive ion).
- Write the name of the anion (negative ion).
 - NaCl
 - Sodium chloride
 - MgF₂
 Magnesium fluoride
 - Magnesi • Al₂O₃
 - Aluminum oxide

- Some metals form more than one cation.
 - Iron Fe²⁺, Fe³⁺
 - Copper Cu⁺, Cu²⁺
 - Lead Pb⁴⁺, Pb²⁺
- When a compound contains one of these metals, we need to specify which cation is present
- A Roman numeral is used to show which charge is on the cation
 - Fe²⁺ = iron(II)
 - Cu⁺ = copper(I)
 - Pb⁴⁺ = lead(IV)

• FeO

- Iron could be Fe^{2+} or Fe^{3+}
- Oxygen has a charge of 2- (O²⁻)
- The charges must balance
- Therefore, the iron ion must have a charge of 2+
- Fe²⁺ = iron(II)
- iron(II) oxide

• Cu₂O

- Copper could be Cu⁺ or Cu²⁺
- Oxygen has a charge of 2- (O²⁻)
- The charges must balance
- Therefore, the copper ions must have a total charge of 2+
- There are 2 copper ions, so each one must have a charge of 1+ (Cu⁺)
- Cu⁺ = copper(I)
- copper(I) oxide

Polyatomic lons

- There are some ions that contain more than one atom
- · These ions have their own name
 - OH- (hydroxide)
 - NO₃- (nitrate)
 - SO₄²⁻ (sulfate)
 - NH₄⁺ (ammonium)

- KNO₃
 - Potassium nitrate
- H_2SO_4
 - Hydrogen sulfate
- (NH₄)₂O
 - Ammonium oxide

Writing Chemical Formulas for Ionic Compounds

- Write the chemical symbol for both ions, including the charge.
- Check to see if the charges match.
- If necessary, use subscripts to show the number of ions necessary to balance the charges.
- Write the final formula.

aluminum oxide

$$AI^{3+}O^{2-} \longrightarrow AI_2^{3+}O_3^{2-} \longrightarrow AI_2O_3$$

iron(III) oxide
 $Fe^{3+}O^{2-} \longrightarrow Fe_2^{3+}O_3^{2-} \longrightarrow Fe_2O_3$
calcium nitrate
 $Ca^{2+}NO_3^{-} \longrightarrow Ca^{2+}(NO_3^{-})_2 \longrightarrow Ca(NO_3)_2$

Examples

• magnesium fluoride

• MgF₂

- sodium oxide
 - Na₂O
- copper(II) oxide
 - CuO
- potassium phosphate

• K₃PO₄

Naming Binary Molecular Compounds

- Write the name of the first element.
 - A prefix representing the number of atoms is used if there is more than one.
- Write the name of the second element with the suffix "ide."
 - A prefix representing the number of atoms is always used.

Prefixes

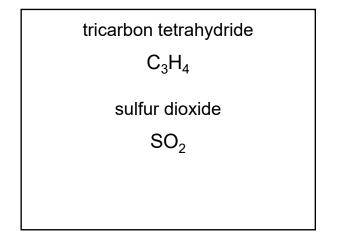
- 1 = mono 6 = hexa
- 2 = di 7 = hepta
- 3 = tri
- 4 = tetra
- 5 = penta 10
- 8 = octa
 9 = nona
 10 = deca

Examples

• CO₂

- carbon dioxide
- N₂O₅
 - dinitrogen pentoxide
- C₄H₈
 - tetracarbon octahydride

Writing Chemical Formulas for Binary Molecular Compounds


- Write the chemical symbol for both elements
- Write the number(s) indicated by the prefix(es)

tricarbon tetrahydride

 $CG_3H_4H_4$

sulfur dioxide

\$\$ 00_22

Examples

- Nitrogen monoxide
 - NO
- Sulfur trioxide
 - SO₃
- Carbon tetrachloride
 - CCl₄
- Dicarbon Hexahydride
 - C₂H₆